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Abstract The energy of a molecular graph is a popular parameter that is defined
as the sum of the absolute values of a graph’s eigenvalues. It is well known that the
energy is related to the matching polynomial and thus also to the Hosoya index via a
certain Coulson integral. It is quite a natural problem to minimize the energy of trees
with bounded maximum degree—clearly, the case of maximum degree 4 (so-called
chemical trees) is the most important one. We will show that the trees with given max-
imum degree that minimize the energy are the same that have been shown previously
to minimize the Hosoya index and maximize the Merrifield-Simmons index, thus also
proving a conjecture due to Fischermann et al. Finally, we show that the minimum
energy grows linearly with the size of the trees, with explicitly computable growth
constants that only depend on the maximum degree.

Keywords Energy of graphs · Matchings · Chemical trees · Matching polynomial ·
Hosoya index

1 Introduction and statement of results

The energy is a graph parameter stemming from the Hückel molecular orbital (HMO)
approximation for the total π -electron energy, see [4, 5]. It is defined as the sum of the
absolute values of all eigenvalues of a graph: if {λ1, λ2, . . . , λn} denotes the spectrum
of a graph G (i.e. the spectrum of its adjacency matrix), one has
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E(G) =
n∑

i=1

|λi |.

For more information about the chemical importance of the energy as well as impor-
tant properties, we refer to the book [6] and the survey article [5]. It is known that there
are many interesting relations between the spectrum and matchings in the case of trees.
This is due to the fact that the characteristic polynomial φ(T, x) = det(x I − A(T )),
where A(T ) denotes the adjacency matrix of a tree T and I the identity matrix, can
be expressed [1] as

φ(T, x) =
∑

k≥0

(−1)km(T, k)xn−2k, (1)

where m(T, k) denotes the number of matchings of T of cardinality k. It follows from
this representation that the energy can actually be computed by means of the Coulson
integral [6]

E(T ) = 2

π

∫ ∞

0
x−2 log

(
∑

k

m(T, k)x2k

)
dx . (2)

This connection to matchings has been used in various instances (the first one being
about 30 years ago, see [3]) to determine the extremal values of the energy within cer-
tain classes of graphs (trees or graphs that are closely related to trees, such as unicyclic
graphs or generally graphs with a bounded number of cycles—see [13–16, 19, 20, 22,
24]). We mention, for instance, the recent papers of Yan and Ye [23] and of Zhou and
Li [28], where trees with prescribed diameter minimizing the energy are characterized.
In [25] and [26], trees with a given number of leaves (pendent vertices) are studied.
An earlier example is the article by Zhang and Li [27], where trees with a perfect
matching are studied (see also [17]). For further recent progress, the reader is referred
to [7, 18].

For obvious reasons, it is also a natural problem to study chemical trees (i.e.,
trees with maximum degree ≤4) and generally trees with bounded maximum degree.
Fischermann et al. [2] noticed that the chemical trees minimizing the energy agree
with those minimizing the Hosoya index (i.e., the total number of matchings, see [12])
for a small number of vertices. Indeed, we will show that this is always the case and
also holds for arbitrary given maximum degree. The resulting trees have also been
shown to maximize the Merrifield-Simmons index (i.e., the total number of indepen-
dent vertex subsets, see [21]) in an earlier paper by the authors [9]. We will show that
essentially the same method can be used again. In view of the representation (2), it is
sufficient to minimize the polynomial

M(T, x) =
∑

k

m(T, k)xk

123



216 J Math Chem (2009) 46:214–230

Fig. 1 Complete d-ary trees

for all positive values of x , cf. [3]. Surprisingly, it turns out that the result of this
minimization problem does not depend on x .

In order to state our result, we use the notion of complete d-ary trees: the complete
d-ary tree of height h − 1 is denoted by Ch , i.e., C1 is a single vertex and Ch has d
branches Ch−1,…,Ch−1, cf. Fig. 1. It is convenient to set C0 to be the empty graph.

Let Tn,d be the set of all trees with n vertices and maximum degree ≤ d + 1. We
define a special tree T ∗

n,d as follows (see also [9]):

Definition 1.1 T ∗
n,d is the tree with n vertices that can be decomposed as

with Bk,1,…,Bk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < � and either B�,1 = · · · = B�,d =
C�−1 or B�,1 = · · · = B�,d = C� or B�,1,…, B�,d ∈ {C�, C�+1, C�+2}, where at least
two of B�,1,…,B�,d equal C�+1. This representation is unique, and one has the “digital
expansion”

(d − 1)n + 1 =
�∑

k=0

akdk, (3)

where ak = (d − 1)(1 + (d + 1)rk) and 0 ≤ rk ≤ d − 1 is the number of Bk,i that are
isomorphic to Ck+2 for k < �, and

• a� = 1 if B�,1 = · · · = B�,d = C�−1,
• a� = d if B�,1 = · · · = B�,d = C�,
• or otherwise a� = d + (d − 1)q� + (d2 − 1)r�,where q� ≥ 2 is the number of B�,i

that are isomorphic to C�+1 and r� the number of B�,i that are isomorphic to C�+2.

As examples, the trees T ∗
n,d for n = 69 and d = 2, 3, 4 are shown in Figs. 2–5.

Further details on the algorithmic construction of T ∗
n,d for given n and d are discussed

in [10].
The tree T ∗

n,d has already been shown to minimize the Hosoya index and maximize
the Merrifield-Simmons index over Tn,d [9]. In the present paper, we will prove the
following result:
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Fig. 2 T ∗
69,3 in the decomposition described in Theorem 1. An explicit version is shown in Fig. 3

Fig. 3 T ∗
69,3, explicit version

Fig. 4 T ∗
69,2

Fig. 5 T ∗
69,4

Proposition 1.2 Let n and d be positive integers and x > 0. Then T ∗
n,d is the unique

(up to isomorphism) tree in Tn,d that minimizes M(T, x). ��

Note that the Hosoya index is exactly M(T, 1), and so it is a trivial corollary that T ∗
n,d

minimizes the Hosoya index. Our main theorem is another immediate consequence
that follows from (2):

Theorem 1 Let n and d be positive integers. Then T ∗
n,d is the unique (up to isomor-

phism) tree in Tn,d that minimizes the energy.

In our final section, we will study the asymptotic behavior of the minimum energy:

Theorem 2 The energy of T ∗
n,d is asymptotically

E(T ∗
n,d) = αdn + O(log n),
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where

αd = 2
√

d(d−1)2

⎛

⎜⎜⎝
∑

j≥1
j≡0 mod 2

d− j
(

cot
π

2 j
− 1

)
+

∑

j≥1
j≡1 mod 2

d− j
(

csc
π

2 j
− 1

)
⎞

⎟⎟⎠

(4)

is a constant that only depends on d.

2 Recursive formulæ for rooted trees

Let x > 0 be fixed. A typical way to determine M(T, x) recursively is the formula

M(T, x) = M(T \e, x) + x M(T \{v,w}, x) (5)

that holds for any edge e = vw of T , cf. [3]. For our purposes, it will be useful to
introduce two auxiliary quantities first. We fix a root r of T , and we define m1(T, k)

to be the number of matchings of cardinality k covering the root and m0(T, k) to be
the number of matchings of cardinality k not covering the root.

Furthermore, we write M j (T, x) = ∑
k m j (T, k)xk for j ∈ {0, 1}. Obviously, we

have M(T, x) = M0(T, x) + M1(T, x). The ratio

τ(T, x) = M0(T, x)

M(T, x)
(6)

will be an important auxiliary quantity in our proofs. The following lemma sum-
marizes important properties of all these quantities, for which we will provide short
self-contained proofs as well (following the ideas used to prove (5)).

Lemma 2.1 Let T1,…,T� be the branches of the rooted tree T . Then the following
recursive formulæ hold:

M0(T, x) =
∏�

i=1
M(Ti , x), (7)

M1(T, x) = x
�∑

i=1

M0(Ti , x)
∏�

j=1
j 
=i

M(Tj , x), (8)

τ(T, x) = 1

1 + x
∑�

i=1 τ(Ti , x)
. (9)

Proof A matching not covering the root corresponds to a selection of an arbitrary
matching in each branch. If the matching of T is required to have cardinality k, the
cardinalities of the corresponding matchings in the branches must add up to k. This is
exactly the coefficient of xk in the product

∏�
i=1 M(Ti , x). This proves (7).
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Every matching of T covering the root contains exactly one edge between the root
and some branch Ti . In this branch, a matching not covering the root of Ti may be
chosen, in all other branches, arbitrary matchings are allowed. The cardinality of the
matching of T is then the sum of the cardinalities of the matchings in the branches
plus one for the edge incident to the root. This yields (8).

Finally, (9) is an immediate consequence of (6), (7) and (8). ��
In the following, we will fix a positive integer d and consider only trees whose max-

imum degree is ≤ d + 1. First of all, we study the behavior of the sequence τ(Ch, x).
It is convenient to set M0(C0, x) = 0 and M1(C0, x) = 1 for the polynomials asso-
ciated to the empty tree. Note that this choice allows adding empty branches without
disturbing the recursive formulæ (7), (8), (9). Then (9) translates into a recursion for
τ(Ch, k) as follows:

τ(C0, x) = 0, τ (C1, x) = 1, τ (Ch, x) = 1

1 + dxτ(Ch−1, x)
.

It is an easy exercise to prove the following explicit formula for τ(Ch, x) by means
of induction:

Lemma 2.2 For every x > 0, we have

τ(Ch, x) =
(

1+√
1+4dx
2

)h −
(

1−√
1+4dx
2

)h

(
1+√

1+4dx
2

)h+1 −
(

1−√
1+4dx
2

)h+1 .

Now, the limit behavior of τ(Ch, x) for positive x follows immediately.

Lemma 2.3 For every x > 0, the subsequence τ(C2h, x) is strictly increasing,
whereas the subsequence τ(C2h+1, x) is strictly decreasing. Both subsequences con-
verge to the same limit 2

1+√
1+4dx

and we have

0 = τ(C0, x) < τ(C2, x) < · · · <
2

1 + √
1+4dx

< · · · < τ(C3, x) < τ(C1, x) = 1.

From this point on, the method of [9], in particular Sect. 5, can be applied. It suffices
to replace d by dx at certain points of the proof. For the sake of completeness, we
state the relevant auxiliary results.

Lemma 2.4 Let T be a rooted tree and x > 0. Then

1

dx + 1
≤ τ(T, x) ≤ 1,

unless T is empty, where τ(T, x) = 0.

Proof To prove this lemma, use induction and Lemma 2.1. ��
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Fig. 6 Reduction to the outline graph (d = 2)

Definition 2.5 Let T be a possibly rooted tree. Then we construct the outline graph
of T by replacing all maximal subtrees isomorphic to some Ck , k ≥ 0, by a special
leaf Ck . In this process, we attach (d + 1 − r) leaves C0 to internal nodes (non-leaves
and non-root) of degree r with 2 ≤ r ≤ d. If T is a rooted tree with a root of degree
r (1 ≤ r ≤ d), then we also attach d − r leaves C0 to it.

The construction ensures that the outline graph of a rooted tree is a rooted d-ary
tree, and that the outline graph of an arbitrary tree of maximum degree ≤ d + 1 has
only vertices of degree 1 and d + 1. An example is shown in Fig. 6. The outline of a
rooted tree Ck is just the rooted tree consisting of the single leaf Ck .

If enough information on the outline of a rooted tree is available, we can determine
it from its τ(T, x)-value.

Lemma 2.6 Let j ≥ 0 be an integer and T be a rooted tree whose outline does not
contain any Ck for 0 ≤ k ≤ j − 3 and x > 0. If

j is odd and τ(C j , x) ≤ τ(T, x)

or

j is even and τ(T, x) ≤ τ(C j , x),

then T ∈ {C j−2, C j }.

Proof The inductive proof is analogous to that of [9, Lemma 3.4], the only difference
being the fact that here, sums are considered instead of products. ��

3 Minimal trees with respect to x

We say that T is a minimal tree with respect to some x > 0, if it minimizes M(T, x)

among all trees in Tn,d .
The key lemma is an exchange lemma which gives a local optimality criterion.

Lemma 3.1 Let x > 0 and let T be a minimal tree with respect to x. If there are
(possibly empty) rooted trees L1,…, Ld , R1,…, Rd and a tree T0 such that T can be
decomposed as
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and such that τ(L1, x) < τ(R1, x) (after appropriate reordering of the Li ’s and the
Ri ’s), then

max{τ(Li , x) : 1 ≤ i ≤ d} ≤ min{τ(Ri , x) : 1 ≤ i ≤ d}.

Proof We need four auxiliary quantities:

• m00(T0, k): number of matchings of T0 of cardinality k where neither v nor w is
covered.

• m10(T0, k): number of matchings of T0 of cardinality k where v is covered, but w

is not.
• m01(T0, k): number of matchings of T0 of cardinality k where w is covered, but v

is not.
• m11(T0, k): number of matchings of T0 of cardinality k where both v and w are

covered.

The corresponding polynomials are denoted by Mi j (T0, x) = ∑
k mi j (T0, k)xk .

Define

G(L1, . . . , Ld , R1, . . . , Rd ; x)

:= M00(T0, x)

(
1 + x

d∑

i=1

τ(Li , x)

) (
1 + x

d∑

i=1

τ(Ri , x)

)

+ M10(T0, x)

(
1 + x

d∑

i=1

τ(Ri , x)

)

+ M01(T0, x)

(
1 + x

d∑

i=1

τ(Li , x)

)
+ M11(T0, x).

Then it is easily seen that
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M(T, x) = G(L1, . . . , Ld , R1, . . . , Rd ; x)

d∏

i=1

M(Li , x)

d∏

i=1

M(Ri , x).

In view of the minimality of M(T, x), we must have

G(L1, . . . , Ld , R1, . . . , Rd ; x) ≤ G(π(L1), . . . , π(Ld), π(R1), . . . , π(Rd); x)

for all permutations π of {L1, . . . , Ld , R1, . . . , Rd}. Ignoring the assumption τ(L1, x)

< τ(R1, x) for the moment, we see that the minimum of the first summand among all
possible permutations is attained if

max{τ(Li , x) : i = 1, . . . , d} ≤ min{τ(Ri , x) : i = 1, . . . , d} or
min{τ(Li , x) : i = 1, . . . , d} ≥ max{τ(Ri , x) : i = 1, . . . , d} (10)

by standard arguments (note that the sum of the two factors does not depend on
the permutation). The sum of the second and the third summand is minimized if
max{τ(Li , x) : i = 1, . . . , d} ≤ min{τ(Ri , x) : i = 1, . . . , d} in the case M10(T0, x)

≤ M01(T0, x) and is minimized if min{τ(Li , x) : i = 1, . . . , d} ≥ max{τ(Ri , x) :
i = 1, . . . , d} in the case that M10(T0, x) ≥ M01(T0, x). Therefore, the minimality of
G yields (10). The assumption τ(L1, x) < τ(R1, x) implies the first possibility. ��

The remaining steps of the proof in [9] do not depend on the particular recur-
sions any more, they only depend on the monotonicity properties in Lemma 2.3 and
Lemma 2.6 as well as the local optimality criterion in Lemma 3.1. The only difference
is that all inequalities have to be reversed (and ρ(T ) has to be replaced by τ(T, x)).
Thus the basis of the final induction can be formulated as follows.

Lemma 3.2 Let T be a minimal tree with respect to x > 0 and let j be the least
nonnegative integer such that the outline graph of T contains a C j . Then the outline
graph of T contains C j at most (d − 1) times and there is a vertex v of the outline
graph of T which is adjacent to all copies of C j in the outline graph of T .

Proof Analogous to the proof of [9, Lemma 4.3]. ��
The inductive step can be formulated as follows.

Lemma 3.3 Let x > 0, T be a minimal tree with respect to x, k be a nonnegative
integer and assume that the outline graph of T can be decomposed as

for some rooted trees Lk (possibly empty) and Rk with

k is even and τ(Ck, x) < τ(Lk, x) < τ(Ck+2, x)
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or

k is odd and τ(Ck+2, x) < τ(Lk, x) < τ(Ck, x)

or

Lk = Ck .

Assume that Rk is non-empty and the outline of Rk does not contain any C� with
� < k.

Then exactly one of the following assertions is true:

1. Rk ∈ {Ck, Ck+1, Ck+3},
2. Rk consists of d branches Ck+1, Ck+1, C�3 ,…, C�d with �i ∈ {k, k + 1, k + 2} for

3 ≤ i ≤ d,
3. the outline of Rk can be decomposed as

for Bk,1,…, Bk,d−1 ∈ {Ck, Ck+2} and a non-empty rooted tree Rk+1 whose outline
does not contain any C� for � ≤ k. Furthermore,

k is even and τ(Ck+3, x) < τ(Lk+1, x) < τ(Ck+1, x)

or

k is odd and τ(Ck+1, x) < τ(Lk+1, x) < τ(Ck+3, x)

where Lk+1 is defined as follows:

Proof Analogous to the proof of [9, Lemma 4.4]. ��
Repeated application of Lemma 3.3 now yields Proposition 1.2 and thus also our

main theorem.

[Proof of Proposition 1.2] Analogous to the proof of [9, Theorem 1]. ��
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4 The value of the minimum energy

Since the extremal trees are described in terms of complete d-ary trees, we have to
study the energy of these trees first. Note that, in view of (7) and the definition of
τ(M, x), we have

M(Ch, x) = 1

τ(Ch, x)
· M(Ch−1, x)d .

Iterating this equation yields

M(Ch, x) =
h∏

j=1

τ(C j , x)−dh− j
,

and in view of Lemma 2.2 this gives us the explicit formula

M(Ch, x) =
h∏

j=1

(
Q j+1(x)

Q j (x)

)dh− j

,

where

Q j (x) := u(x) j − v(x) j

u(x) − v(x)
,

u(x) := 1 + √
1 + 4dx

2
,

v(x) := 1 − √
1 + 4dx

2
.

The denominator u(x) − v(x) has been introduced such that Q j (x) is always a
polynomial: Indeed, the recursion

Q1(x) ≡ 1, Q2(x) ≡ 1, Q j (x) = Q j−1(x) + dx Q j−2(x)

holds, and it follows by induction that Q j is a polynomial of degree �( j − 1)/2�. It
should be noted that Q is closely related to the so-called Fibonacci polynomials (see
[11]). Now we have

M(Ch, x) = Qh+1(x)Q1(x)−dh−1
h∏

j=2

Q j (x)dh+1− j
h∏

j=2

Q j (x)−dh− j

= Qh+1(x)

h∏

j=1

Q j (x)(d−1)dh− j
,
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where the fact that Q1(x) = 1 has been used. It turns out that the zeros of Q j can be
explicitly computed. If Q j (x) = 0, then u(x) j = v(x) j , and so

u(x)

v(x)
= 1 + √

1 + 4dx

1 − √
1 + 4dx

has to be a j th root of unity ζ . Then,

x = − ζ

d(1 + ζ )2 = − 1

2d(1 + Re(ζ ))
.

Thus, x has to be of the form

x = − 1

2d
(

1 + cos 2kπ
j

)

for some 0 ≤ k <
j
2 . However, note that x = − 1

4d is also a zero of the denominator
u(x) − v(x) = √

1 + 4dx , and that there are no double zeros, since the derivative is
given by

d

dx

(
u(x) j − v(x) j

)
= jd√

1 + 4dx

(
u(x) j−1 + v(x) j−1

)
,

which cannot be 0 if u(x) = ζv(x) for a j th root of unity ζ 
= −1. Hence, the zeros
of Q j are precisely the numbers

− 1

2d
(

1 + cos 2kπ
j

) , k = 1, 2, . . . ,

⌊
j − 1

2

⌋
,

and it follows from (1) that the characteristic polynomial φ(Ch, x) can be written as

φ(Ch, x) = xn M(Ch,−x−2) = xn Qh+1(−x−2)

h∏

j=1

Q j (−x−2)(d−1)dh− j
.

Hence, the nonzero eigenvalues of Ch are

±
√

2d

(
1 + cos

2kπ

j

)
= ±2

√
d cos

kπ

j
, k = 1, 2, . . . ,

⌊
j − 1

2

⌋
,

with multiplicity (d − 1)dh− j for j = 1, 2, . . . , h and multiplicity 1 for j = h + 1.
If follows that the energy of Ch is given by
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E(Ch) =
⎛

⎝
h∑

j=1

(d − 1)dh− j
�( j−1)/2�∑

k=1

4
√

d cos
kπ

j

⎞

⎠ +
�h/2�∑

k=1

4
√

d cos
kπ

h + 1
.

Noticing that

�( j−1)/2�∑

k=1

cos
kπ

j
=

⎧
⎨

⎩

1
2

(
cot π

2 j − 1
)

j ≡ 0 mod 2,

1
2

(
csc π

2 j − 1
)

j ≡ 1 mod 2,

this reduces to

E(Ch) = 2
√

d(d−1)

⎛

⎜⎜⎝
h∑

j=1
j≡0 mod 2

dh− j
(

cot
π

2 j
−1

)
+

h∑

j=1
j≡1 mod 2

dh− j
(

csc
π

2 j
− 1

)
⎞

⎟⎟⎠

+
⎧
⎨

⎩
2
√

d
(

csc π
2(h+1)

− 1
)

h ≡ 0 mod 2,

2
√

d
(

cot π
2(h+1)

− 1
)

h ≡ 1 mod 2.

Next, we determine the asymptotic behavior of the energy of Ch :

Lemma 4.1 The energy of a complete d-ary tree Ch satisfies

E(Ch) = αd |Ch | + O(1),

where |Ch | denotes the number of vertices of Ch and αd is given by (4).

Proof Note that |Ch | = dh−1
d−1 = dh

d−1 + O(1) and cot π
2 j = 2 j

π
+ O(1), csc π

2 j =
2 j
π

+ O(1), so that

E(Ch) = 2
√

d(d − 1)dh

⎛

⎜⎜⎝
h∑

j=1
j≡0 mod 2

d− j
(

cot
π

2 j
− 1

)

+
h∑

j=1
j≡1 mod 2

d− j
(

csc
π

2 j
− 1

)
⎞

⎟⎟⎠ + 4
√

dh

π
+ O(1)

= αd |Ch | − 2
√

d(d − 1)dh

⎛

⎜⎜⎝
∑

j>h
j≡0 mod 2

d− j
(

cot
π

2 j
− 1

)
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+
∑

j>h
j≡1 mod 2

d− j
(

csc
π

2 j
− 1

)
⎞

⎟⎟⎠ + 4
√

dh

π
+ O(1)

= αd |Ch | − 2
√

d(d − 1)dh
∑

j>h

d− j
(

2 j

π
+ O(1)

)
+ 4

√
dh

π
+ O(1)

= αd |Ch | − 2
√

d(d − 1)dh
(

2hd−h

(d − 1)π
+ O(d−h)

)
+ 4

√
dh

π
+ O(1)

= αd |Ch | + O(1),

as claimed. ��

Now, we are able to prove our main asymptotic result:
Proof of Theorem Using the decomposition of T ∗

n,d as shown in Definition 1.1, we
note that

⎛

⎝
�−1∏

k=0

d−1∏

j=1

M(Bk, j , x)

⎞

⎠

⎛

⎝
d∏

j=1

M(B�, j , x)

⎞

⎠ ≤ M(T ∗
n,d , x)

≤
⎛

⎝
�−1∏

k=0

d−1∏

j=1

M(Bk, j , x)

⎞

⎠

⎛

⎝
d∏

j=1

M(B�, j , x)

⎞

⎠ (1 + x)d(�+1)

for arbitrary x > 0, since every matching in the union
⋃

k
⋃

j Bk, j is also a matching
in T ∗

n,d , whereas every matching of T ∗
n,d consists of a matching in

⋃
k
⋃

j Bk, j and a
subset of the remaining ≤ d(� + 1) edges. Making use of (2) once again, this implies
that

�−1∑

k=0

d−1∑

j=1

E(Bk, j ) +
d∑

j=1

E(B�, j ) ≤ E(T ∗
n,d) ≤

�−1∑

k=0

d−1∑

j=1

E(Bk, j )

+
d∑

j=1

E(B�, j ) + 2

π
d(� + 1)

∫ ∞

0
x−2 log(1 + x2) dx .

Since
∫ ∞

0 x−2 log(1 + x2) dx = π , this implies that

E(T ∗
n,d) =

�−1∑

k=0

d−1∑

j=1

E(Bk, j ) +
d∑

j=1

E(B�, j ) + O(�)

=
�−1∑

k=0

d−1∑

j=1

(
αd |Bk, j | + O(1)

) +
d∑

j=1

(
αd |B�, j | + O(1)

) + O(�)
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= αd

⎛

⎝
�−1∑

k=0

d−1∑

j=1

|Bk, j | +
d∑

j=1

|B�, j |
⎞

⎠ + O(�)

= αd(|T ∗
n,d | − O(�)) + O(�) = αdn + O(�).

It is not difficult to see that � = O(log n) (this follows from (3), see [8] for a
detailed analysis), and so we finally have

E(T ∗
n,d) = αdn + O(log n),

which finishes the proof. ��
The following table shows some numerical values of the constants αd :

d αd

2 1.102947505597

3 0.970541979946

4 0.874794345784

5 0.802215758706

6 0.744941364903

7 0.698315075830

8 0.659425329682

9 0.626356806404

10 0.597794680849

20 0.434553264777

50 0.279574397741

100 0.198836515295

5 Conclusion

In this paper, we were able to prove that the trees with a given number n of vertices
and given maximum degree d + 1 that minimize the energy are exactly the trees T ∗

n,d
that were shown earlier to minimize the Hosoya index and maximize the Merrifield-
Simmons index (which was conjectured and proven for a small number of vertices by
Fischermann et al. [2]). The extremal trees are unique up to isomorphism and can be
described in terms of complete d-ary trees (as seen in Definition 1.1).

The fact that these trees minimize the energy and the Hosoya index is actually
a mere corollary of the more general result (Proposition 1.2) that they minimize the
matching polynomial M(T, x) for arbitrary positive x . The main theorem (Theorem 1)
is then a consequence of the well-known representation of the energy as a Coulson
integral. Indeed, it is believable that even all coefficients of the matching polynomial
are minimized (i.e., T ∗

n,d is also the smallest element with respect to the partial order ≺
introduced in [3]: for two trees T1 and T2, T1 ≺ T2 if and only if m(T1, k) ≤ m(T2, k)

for all k), even though this is probably much more difficult to prove. The trees T ∗
n,d

might also be extremal with respect to other graph parameters similar to the energy,
the Hosoya index and the Merrifield-Simmons index.
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Finally, it is also possible to describe the asymptotic behavior of the energy of the
extremal trees T ∗

n,d quite precisely. The minimum energy of a tree with n vertices and
maximum degree d + 1 grows linearly in n and is approximately equal to αdn, where
αd is an explicitly computable constant (given in (4)).

Acknowledgements This paper was written while C. Heuberger was a visitor at the Center of Experi-
mental Mathematics at the University of Stellenbosch. He thanks the center for its hospitality. He was also
supported by the Austrian Science Foundation FWF, project S9606, that is part of the Austrian National
Research Network “Analytic Combinatorics and Probabilistic Number Theory.”

References
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